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I.  Introduction and Overall Objectives      A significantly enhanced infrared (IR) signature recognition and tracking could impact a wide range of space-based military mission.  To enhance IR detection sensitivity, a strong electromagnetic wave concentration is required.A significantly enhanced infrared (IR) signature recognition and tracking could impact a wide range of space-based military mission.  To enhance IR detection sensitivity, a strong electromagnetic wave concentration is required.

 Under this program, our goal is to 

explore plasmonic interaction taking place at sub-wavelength (sub-λ) scale and to achieve a >200-400% IR 

field enhancement.  The specific accomplishments for the past twelve month are described below.  

II.  An Extraordinary IR Focusing by Plasmonic Resonance at a Super Thin Metal Film  

II (a): Experimetal observation of a >300% transmission enhamcement  

 Most of the current 2D hole-array plasmonic works are performed at either near infrared or optical 

wavelengths. All prior experimental data seems to suggest an intrinsic limit on the degree of achievable field 

concentration through the 2D holes. Particularly, there exists a fundamental trade-off between reducing the 

hole-area (i.e. the hole filling fraction) and enhancing the transmission amplitude (T).  

 Under this nano-initiative program, we have (1) successfully extended the operating wavelength of 

our plasmonic structure to infrared λ=5-10μm; (2) overcome the aforementioned fundamental limitation and 

achieved a >300% IR field concentration; (3) successfully developed a process receipt for integrating a 2D 

plasmonic hole array to a QDIP (quantum dot infrared detector).  Experimental infrared photodetector setup 

has also been set up, which is under system calibration and will be ready for a full testing in three months. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 (a) A diagram showing a plasmonic field focusing at the metal corners, along with two SEM 
(scanning electron micrograph) images of a fabricated 2D Au hole-array structure at RPI; (b) our 
experimental data taken from a series of hole-array samples with lattice constant a=2.48 to 3.72μm. 
The hole-diameter is kept fixed at d=1300nm. The transmission of 80% is exceedingly high. The shift 
of transmission peak (indicated by the black arrows) indicates that the resonance is mediated by the 
periodicity of the hole-array; (c) our experimental data taken from a series of samples with different 
Au thickness, t=50-150nm. The transmission flux (transmission/hole area) is >300% as compared to 
that of the incident light, the highest ever been reported.  
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 The experimental data of Figure 1 shows that we have achieved our objective of a sub-λ focusing 

(λ/d~7) and, at the same time, an ultra high transmission of 80%. This feast is accomplished by two unique 

approaches: (1) the increase of resonance λ (for a given hole-size) by exciting plasmonic resonance at the 

Au-silicon interface and not the Au-air interface; and (2) the use of a super thin metal (i.e. t=50nm) to 

enhance tunneling probability of light though the metallic holes. The interplay of these two mechanisms 

enables us to achieve the highest IR transmission enhancement ever been reported.   

Recognizing that the skin depth of Au-film is δ~10nm in this wavelength regime, we should be able 

to decrease the Au-film thickness further to about t=30nm and observe an even higher resonant 

transmission. In this case, we expect to observe a resonant transmission of >95% and a corresponding 

transmission flux enhancement of 380%. This experimental work is currently underway. This is an 

important task that we anticipate to achieve under this program as our next six month’s milestone.  

II (b): The two key mechanisms- plasmonic resonance and electromangetic wave tunneling  

 We have also investigated the underlying mechanisms responsible for the experimentally observed 

strong transmission.  A result of finite difference time domain modeling offers several important clues for 

the field enhancement: (1) the incoming EM field is strongly funneled right at the metal corners; (2) the 

plasmonic resonance occurs at the corner of the metal/silicon interface (indicated in Figure 2(a) by the 

black arrows); and (3) the field amplitude builds up in time when it is on resonance (see Figure 2(c)).  This 

study not only confirms our experimental finding, but also identifies the essential design criteria for 

achieving enhanced sub-λ transmission at any wavelengths.  
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Figure 2 (a) A diagram showing focusing of EM field by metallic corners. It is in this sense that a 
2D hole-array could function as a “planar lens”; (b) a cross section plot of field profile around a 
metallic hole. There is an ultra intense field at the bottom metal corner near the metal/ substrate 
interface (indicated by the black arrows); (c) at the resonance λ=7.57μm, the field strength at the 
bottom interface increases quickly, leading to an enhanced light transmission; (d) when the incident 
light is off resonance, the field does not build-up and the corresponding transmission is low.  
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I I (c):  The material growth of QDIP, succesful process development and a test system build up   

 By working with scientists at AFRL, we have come to an important conclusion that the field 

enhancement is large enough and the next step is to integrate a 2D hole-array to a QDIP (quantum-dot-

infrared-photodetector). The challenges of this integration are three-folds: (1) the advancement of device 

processing to integrate the delicate 2D hole-array fabrication to the QDIP device processing; (2) the growth 

of a well-controlled QDIP semiconductor structure; (3) the set-up and calibration of an IR photodetector 

testing system.  

 For the QDIP growth, we have contacted Prof. S. Krishna of University of New Mexico and 

obtained high quality samples.  At RPI, we have focused our effort on semiconductor process development. 

We have also purchased a brand new infrared detection system that includes a broadband IR light source 

and an IR monochrometer. We have also setup a low temperature (T=4.2-77K) optical dewar for sample 

mounting and for cold-shielding.  This setup along with our process development will allow us to evaluate 

device response and show improvement of system performance as a result of our plasmonic structure.  

 

 

  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 3 (a) a diagram of our QDIP growth structure; (b) a hexagon design of an integrated 2D hole-
array/ QDIP device; (c) the photo-response of our QDIP at both the mid-IR and long-IR regime; (d) 
a top view photo of a test sample, showing a well-controlled mesa etch to define the hexagon region 
and the Au-deposition; (e) a SEM image of a clean and well-defined mesa etch profile; and (f) a 
photo of our new infrared photo-detector measurement system at RPI. 
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II (d).  Extraordinary plasmonic-quantum dots interaction for a >100% enhancement in detectivety  

In Figure 4(a), (b) and (c), we show photo-response curves (the blue squares) taken from 
three 2DHA-QD samples with a = 2.8, 3.0 and 3.2 μm, respectively. The data taken from QD-
samples without 2DHA (the black dots) are also shown as a reference. For the 2DHA-QD sample 
with a = 2.8μm (figure 4a), its photo-response is similar to the reference one. However, there is 
one exception between them, i.e. the appearance of a small, but clear kink at λ = 7.8 μm for the 
2DHA-QDIP sample. For the sample with a larger a=3.0 μm (figure 4b), it shows a similar 
response curve. But, this time, the strength of the kink becomes stronger. As we continue to 
increase a = 3.2 μm (figure 4c), we achieve a nearly perfect matching of the kink-λ to one of the 
QDIP response maxima at λ= 8.8μm. In this case, our data exhibits a large 65% enhancement (or 
165% signal strength as compared to the reference) of photo-response at λ=8.8 μm. In Figure 4(d), 
(e) and (f), we show photo-response curves (the blue squares) taken from three 2DHA-QD 
samples with a = 3.2 μm and d=1.1, 1.2 and 1.6 μm, respectively.  The largest enhancement is 
observed to be 130% for the d=1.6μm sample.  
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Figure 4 (a), (b), (c), Photoresponse curves taken from 2DHA-QD samples with three different 
hole-to-hole spacing a=2.8, 3 and 3.2μm, respectively.   
Figure 4 (d), (e), (f), Photoresponse curves taken from 2DHA-QD samples with the same a=3.2μm, 
but three different hole-diameter d=1.1, 1.2 and 31.6μm, respectively.  
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